МРТ-КТ
Честная Медицина
Диагностический центр
МРТ и КТ в Волгограде
place
Находимся по адресу
г. Волгоград,
ул. Комсомольская, 3

Бета лимфоциты

Дендритные клетки и лимфоциты

Примечание. На данной странице кратко рассмотрены функции и характеристики основных иммунокомпетентных клеток: Т- и В-лимфоцитов и дендритных клеток (DCs). Но в начале дана характеристика особому двойному функционалу иммунной системы, в которой основную роль играют лимфоциты. Поэтому стоит напомнить, что же из себя предсталяют эти клетки.

Лимфоциты — это клетки иммунной системы, представляющие собой разновидность лейкоцитов, которые обеспечивают гуморальный иммунитет (выработка антител), клеточный иммунитет (контактное взаимодействие с клетками-мишенями), а также регулируют деятельность клеток других типов. По морфологическим признакам выделяют два типа лимфоцитов: большие гранулярные лимфоциты (чаще всего ими являются NK-клетки и малые лимфоциты (T-клетки и B-клетки).

Типы лимфоцитов 

Те или иные механизмы иммунной защиты есть практически у всех животных. Эти механизмы сильно различаются по своей структуре, сложности, эффективности и, главное, по соотношению врожденных и приобретенных компонентов. У беспозвоночных преобладает врожденный иммунитет, хотя это далеко не абсолютное правило. У позвоночных вдобавок к врожденным защитным механизмам развилась необычайно сложная адаптивная иммунная система, способная приспосабливаться (адаптироваться) к всевозможным новым инфекциям, вырабатывать новые средства борьбы с ними и обладающая к тому же хорошей памятью (именно благодаря иммунной памяти мы получаем стойкий иммунитет ко многим болезням, однажды переболев ими).

В ходе развития (созревания) лимфоцитов происходит сложная перестройка их генома. Суть ее состоит в том, что из имеющегося в геноме набора «заготовок» комбинаторным путем формируются зрелые, готовые к использованию гены антител или Т-клеточных рецепторов. Возникает огромное разнообразие лимфоцитов, производящих сотни тысяч и миллионы разных иммунных рецепторов. Среди этих рецепторов неизбежно появляются и опасные для организма, готовые наброситься на свои собственные антигены. Лимфоциты, производящие такие рецепторы, отбраковываются; остальные сохраняются. В результате организм получает огромный набор лимфоцитов, способных распознавать чуть ли не любые чужеродные белки и углеводы. Когда в организм проникает инфекция (например, бактерии), те B-лимфоциты, чьи антитела проявляют наибольшее сродство к поверхностным веществам (антигенам) данной бактерии, дополнительно «подгоняют» гены своих антител к этим антигенам путем соматического гипермутирования.

T- и B-лимфоциты высших позвоночных обмениваются между собой разнообразными химическими сигналами (см. ниже интерлейкины). В соответствии с этим у разных типов лимфоцитов активны строго определенные гены, ответственные за прием и передачу этих сигналов.

Интерлейкины — группа цитокинов (белков), синтезируемая и секретируемая Т-лимфоцитами, В-лимфоцитами и NK-клетками, а также взаимодействующими с ними клетками. Цитокины — это небольшие пептидные информационные молекулы. Цитокины имеют молекулярную массу, не превышающую 30 кD. Цитокин выделяется на поверхность клетки А и взаимодействует с рецептором находящейся рядом клетки В. Таким образом, от клетки А к клетке В передается сигнал, который запускает в клетке В дальнейшие реакции. Их основными продуцентами являются лимфоциты (дополнительно о цитокинах см. здесь →).

Более подробно о цитокинах см. в отдельном разделе:

Одно из главных функциональных различий В- и Т-лимфоцитов состоит в том, что первые специализируются в первую очередь на борьбе с инфекциями путем массового производства антител, а вторые — в большей степени «разведчики» и специалисты по тонкому различению «своих» и «чужих» антигенов; в частности, они внимательно следят за тем, чтобы B-лимфоциты по ошибке не начали производить аутоиммунные антитела, атакующие собственные клетки организма.

Т-клеточные рецепторы идентифицируют присутствие чужеродной белковой молекулы только в том случае, если эта молекула уже попала внутрь какой-нибудь другой клетки организма (например, B-лимфоцита) и была там расщеплена на короткие кусочки. Эти кусочки затем соединяются со специальными белками (их называют белками Главного Комплекса Гистосовместимости (ГКГС, англ. MHC, major histocompatibility complex). Комплексы из белков ГКГ и коротких обрывков других белков — своих и чужих — клетки выставляют на своей поверхности специально для того, чтобы Т-лимфоциты могли их «ощупать» своими рецепторами. Т-клеточные рецепторы безошибочно отличают «свое» от «чужого», но только в том случае, если исследуемый образец аккуратно порезан на кусочки нужной длины и присоединен к белку ГКГ.

Разделение труда между лимфоцитами неизбежно вытекает из самой «идеи» производства огромного количества разнообразных иммунных рецепторов комбинаторным путем. С одной стороны, благодаря этой технологии позвоночные успешнее, чем любые другие животные, противостоят разнообразным инфекциям. Вряд ли без этого наши предки смогли бы стать теплокровными, то есть превратиться в ходячий термостат с питательной средой для микробов. С другой, такая иммунная система должна находиться под строжайшим контролем, иначе она мгновенно убьет свой собственный организм. Кто же может проконтролировать, какой антиген распознал тот или иной лимфоцит, точно ли этот антиген чужой и не будет ли для организма вреда, если данный лимфоцит начнет размножаться? Кроме другого лимфоцита, никто в этом не разберется. Иммунная система должна контролировать себя сама.

Совместить в одной и той же клетке обе функции — «боевую» и «самоконтролирующую» — очень трудно, особенно если эти функции должны выполняться с очень высокой эффективностью. Тем самым создаются предпосылки для разделения труда между лимфоцитами: одни из них специализируются на борьбе с инфекцией, а другие внимательно следят за первыми, чтобы те не начали по ошибке производить опасные для организма антитела.

Активация иммунитета и Дендритные клетки

В 2011 году Нобелевская премия по физиологии и медицине присуждена Брюсу Бойтлеру и Жюлю Хоффманну за открытие механизмов активации врождённого иммунитета, и Ральфу Штайнману за открытие дендритных клеток и их роли в активации адаптивного иммунитета. Эти исследования называют революционными, поскольку открытие врождённого иммунитета в корне изменило представление о функционировании иммунной системы.

Иммунитет. Это слово давно и прочно заняло своё место в лексиконе современного человека. Чаще всего под иммунитетом понимают способность организма защищаться от опасных вирусов, бактерий, грибков или других паразитов. Но что это за механизм и как, собственно, осуществляется эта защита, понимают лишь немногие специалисты. Механизм и вправду очень сложный. Нобелевские лауреаты этого года вскрыли лишь некоторые ключевые моменты «первой линии обороны» — системы врождённого иммунитета.

В природе существуют две линии защиты, два вида иммунитета.

Первая и самая древняя — система врождённого иммунитета, которая нацелена на разрушение клеточной мембраны чужеродной клетки. Она присуща всем живым существам — от дрозофилы до человека. Если всё же какой-либо белковой молекуле-чужаку удалось прорваться сквозь «первую линию обороны», с ней расправляется «вторая линия» — адаптивный, или приобретённый, иммунитет.

Адаптивный иммунитет — это высшая форма защиты, которая присуща только позвоночным. Механизм приобретённого иммунитета очень тонко настроен и специфичен. Вкратце: при попадании в организм чужеродной белковой молекулы белые кровяные клетки (лейкоциты) начинают производить антитела — на каждый белок (антиген) вырабатывается своё определённое антитело. Сначала активируются так называемые T-клетки (T-лимфоциты), которые начинают производить активные вещества цитокины, запускающие синтез антител B-клетками (B-лимфоциты). Сила или слабость иммунной системы обычно оценивается по количеству именно B- и T-клеток, настолько они важны для защиты организма. Взаимодействие антиген-антитело очень сильное и очень специфическое. Когда антитела «садятся» на белки-антигены, находящиеся на поверхности вируса или бактерии, развитие инфекции в организме блокируется (дополнительно об адаптивном имунитете см. здесь).

Процесс выработки антител запускается не сразу, у него есть определённый инкубационный период, зависящий от типа патогена. Зато, если уж процесс активации пошёл, как только та же самая инфекция попытается проникнуть в организм ещё раз, B-клетки моментально отреагируют выработкой антител, и инфекция будет уничтожена немедленно, не причинив никакого вреда. Именно поэтому на некоторые виды инфекций у человека вырабатывается иммунитет на всю оставшуюся жизнь.

Рисунок 1. Дендритные клетки как бы показывают T-клеткам их «врагов»Toll-подобные рецепторы на поверхности взаимодействуют с характерными молекулярными структурами на поверхности клеточной мембраны бактерии (PAMP), внутрь клетки идёт биохимический сигнал, и на поверхность дендритной клетки выносятся антигены, которые T-клетки могут легко «пощупать» с помощью специальных антиген-распознающих белков. «Узнавание» антигена сопровождается активацией T-клеток с последующим превращением их в Т-хелперы и запуском каскада биохимических реакций, конечный результат которых — выработка специфических антител В-клетками. Кроме того, под действием PAMP дендритные клетки и макрофаги вырабатывают специальные молекулы — цитокины, также способствующие активации T-клеток. Адаптированный рисунок из статьи Medzhitov R. Toll-like receptоrs and innate immunity. Nat. Rev. Immunol. 2001, 1, 135–142.

А вот система врождённого иммунитета неспецифична и не обладает «долгосрочной памятью», поскольку реагирует на некие молекулярные структуры, присущие всем патогенным микроорганизмам. Эти структуры получили название «патоген-ассоциированные молекулярные образы» (pathogen-associated molecular patterns — PAMP). Такими PAMP служат молекулы, входящие в состав клеточной мембраны бактерий. Несмотря на химические различия, все эти структуры обладают следующими свойствами: они синтезируются только микроорганизмами (в клетках животных их нет, поэтому распознавание PAMP расценивается иммунной системой как сигнал к началу борьбы с чужаком); они характерны для целого ряда патогенов, а не только для одного; эти структуры являются важными для жизнедеятельности бактерии, поэтому в процессе эволюции они меняются очень медленно (иначе иммунная система просто не успевала бы настраивать распознавание). Если бактерии удаётся прорвать «первую линию обороны» и избежать уничтожения макрофагами или гранулоцитами, то в борьбу должна включиться система приобретённого иммунитета.

Каким образом система врождённого иммунитета подаёт знак системе приобретённого иммунитета на выработку специфических антител? Вот за решение этого ключевого вопроса иммунологии и присуждена Нобелевская премия 2011 года.

В 1973 году Ральф Штайнман открыл новый вид клеток, которые назвал дендритными, поскольку внешне они напоминали дендриты нейронов. Клетки обнаружились во всех тканях организма, которые соприкасались с внешней средой: в коже, лёгких, слизистой оболочке желудочно-кишечного тракта. Сначала исследователь предположил (в ту пору это вызвало скептицизм многих учёных), а затем и доказал, что дендритные клетки служат посредниками между врождённым и приобретённым иммунитетом. То есть «первая линия обороны» подаёт через них сигнал, который активирует T-клетки и запускает каскад выработки антител B-клетками (дополнительно о врожденном иммунитет см. здесь).

Дендритные клетки (англ. Dendritic cells, DC) – это  популяция особых клеток иммунной системы костно-мозгового происхождения, функция которых заключается в презентации «вражеских» антигенов другим клеткам иммунной системы. Таким способом они активируют адаптивный иммунитет. По научному, такие клетки-посредники называются антигенпрезентирующими (АПК). См. механизм действия на рис. 1 и рис. 2).

Как оказалось позже, дендритные клетки (так же как и макрофаги и эпителиальные клетки) имеют на клеточной поверхности специальные белковые комплексы — рецепторы. Гены, кодирующие эти рецепторы, аналогичны Toll-генам плодовой мушки дрозофилы (от нем. toll — сногсшибательный, безумный), играющим ключевую роль в эмбриогенезе. В 1996 году Жюль Хоффманн обнаружил, что у мушек с «выключенным» Toll-геном полностью отсутствовал иммунитет и они погибали от любой грибковой инфекции. Хоффманн предположил, что ген Tollважен не только для развития эмбриона, он ещё играет ключевую роль в иммунной системе. Как оказалось, этот ген кодирует специальные рецепторы, распознающие молекулы в структуре мембран бактериальных патогенов (PAMP), посылая биохимический сигнал на устранение «чужака». Их назвали «Toll-подобные рецепторы» (англ. Toll-like).

При взаимодействии РАМР с Toll-подобным рецептором на поверхности дендритной клетки появляются белки-антигены, которые и запускают адаптивный иммунный ответ T-клеток. У человека обнаружен десяток таких Toll-подобных рецепторов. Некоторые из них находятся на поверхности клеток, другие «плавают» в клеточной цитоплазме. Конечным результатом взаимодействия PAMP с этими рецепторами является активация T-клеток. На клеточном уровне происходит активация фагоцитов: они начинают продуцировать активные формы кислорода, а следовательно, более интенсивно переваривать «обрывки» клеточных стенок чужеродных бактерий.

В 1998 году Брюс Бойтлер изучал рецепторы бактериальных липополисахаридов (LPS) — молекул, в которых липид и сахар «сшиты» между собой. LPS — очень активные в иммунологическом отношении молекулы, они не просто стимулируют, а «суперстимулируют» иммунитет, в определённых условиях вызывая септический шок. Бойтлер пытался найти ген, отвечающий за эффекты LPS, и обнаружил, что мыши, нечувствительные к LPS, имеют мутацию в гене, очень похожем на Toll-ген мушки-дрозофилы. Toll-подобный рецептор случайно оказался тем самым неуловимым LPS-рецептором, то есть LPS взаимодействует с Toll-подобным рецептором, приводя к активации воспалительных процессов, вплоть до септического шока. Так выяснилось, что у мушек и мышей есть один и тот же механизм защиты от инфекции. «Зловредными» компонентами мембраны клеточных бактерий, которые и вызывали реакцию врождённого иммунитета, оказались липополисахариды — компоненты клеточной стенки грамотрицательных бактерий.

Таким образом, открытие врождённого иммунитета привело к появлению новых подходов в профилактике и лечении заболеваний, в разработке новых вакцин и противоопухолевых препаратов.

Адаптивный иммунитет может дифференцировать между конкретными патогенами и нацелить ответ, который является специфическим для данного патогена. Он может быстро реагировать при повторном воздействии конкретного патогена, предотвращая развитие симптомов (иммунологическая память). Адаптивная иммунная система координируется лимфоцитами (класс лейкоцитов) и приводит к выработке антител. В-лимфоциты (В-клетки) являются антитело-продуцирующими клетками, которые распознают и нацеливают определенный фрагмент патогена (антиген). Хелперные Т-лимфоциты (Т-клетки) являются регуляторными клетками, которые высвобождают химические вещества (цитокины) для активации специфических В-лимфоцитов

  1. Когда фагоцитарные лейкоциты поглощают патоген, некоторые из них представляют переваренные фрагменты (антигены) на их поверхности
  2. Эти антигенпрезентирующие клетки (дендритные клетки) мигрируют в лимфатические узлы и активируют специфические хелперные Т-лимфоциты
  3. Затем хелперные Т-клетки высвобождают цитокины для активации конкретной В-клетки, способной продуцировать антитела, специфичные к антигену
  4. Активированная В-клетка будет делиться и дифференцироваться с образованием короткоживущих плазматических клеток, которые производят большое количество специфических антител
  5. Антитела будут нацелены на их специфический антиген, повышая способность иммунной системы распознавать и уничтожать патоген.

Небольшая доля активированной B-клетки (и активированной TH-клетки) будет развиваться в клетки памяти, чтобы обеспечить длительный иммунитет.

См. дополнительно:

Лимфоциты ответственны за приобретенный иммунитет

B-лимфоциты (B-клетки) — функциональный тип лимфоцитов, играющих важную роль в обеспечении гуморального иммунитета. При контакте с антигеном или стимуляции со стороны T-клеток некоторые B-лимфоциты трансформируются в плазматические клетки, способные к продукции антител. Другие активированные B-лимфоциты превращаются в B-клетки памяти. Помимо продукции антител, В-клетки выполняют множество других функций: выступают в качестве антигенпрезентирующих клеток, продуцируют цитокины и экзосомы.

B-лимфоциты продуцируют и секретируют в кровоток молекулы антител, являющиеся измененными формами антигенраспознающих рецепторов этих лимфоцитов. Возникновение антител в крови после появления любого чужеродного белка- антигена — независимо от того, вреден он или безвреден для организма, и представляет собой иммунный ответ. Появление антител не просто защитная реакция организма против инфекционных заболеваний, но явление, имеющее широкое биологическое значение: это общий механизм распознавания «чужого». Например, иммунная реакция распознает как чужой и постарается удалить из организма любой аномальный и, следовательно, потенциально опасный вариант клетки, в которой в результате мутации в хромосомной ДНК образуется мутантная белковая молекула.

B-лимфоциты млекопитающих дифференцируются сначала в печени плода, а после рождения — красном костном мозге. В цитоплазме покоящихся B-клеток отсутствуют гранулы, но имеются рассеянные рибосомы и канальцы шероховатого эндоплазматического ретикулума. Каждая B-клетка генетически запрограммирована на синтез молекул иммуноглобулина, встроенных в цитоплазматическую мембрану. Иммуноглобулины функционируют как антигенраспознающие рецепторы, специфичные к определенному антигену. На поверхности каждого лимфоцита экспрессируется около ста тысяч молекул рецепторов. Встретив и распознав антиген, соответствующий структуре антигенраспознающего рецептора B-клетки размножаются и дифференцируются в плазматические клетки, которые образуют и выделяют в растворимой форме большие количества таких рецепторных молекул — антител.  Антитела представляют собой крупные гликопротеины и содержатся в крови и тканевой жидкости. Благодаря своей идентичности исходным рецепторным молекулам они взаимодействуют с тем антигеном, который первоначально активировал B-клетки, проявляя таким образом строгую специфичность.

После связывания антигена с рецепторами B-клетки клетка активируется. Активация B-клеток состоит из двух фаз: пролиферации и дифференцировки; все процессы индуцируются контактом с антигеном и T- хелперами.

В результате пролиферации увеличивается число клеток, способных реагировать с введенным в организм антигеном. Значение пролиферации велико, поскольку в неиммунизированном организме очень мало B-клеток, специфичных для определенных антигенов.

Часть клеток, пролиферирующих под действием антигена, созревает и дифференцируется последовательно в антителообразующие клетки нескольких морфологических типов, в том числе и плазматические клетки . Промежуточные стадии дифференцировки B-клеток отмечены меняющейся экспрессией разнообразных белков клеточной поверхности, необходимых для взаимодействия B-клеток с другими клетками.

Каждый лимфоцит, относящийся к B-лимфоцитам и дифференцирующийся в костном мозге, запрограмирован на образование антител только одной специфичности.

Молекулы антител не синтезируются никакими другими клетками организма, и все их многообразие обусловлено образованием нескольких миллионов клонов B-клеток. Они (молекулы антител) экспрессируются на поверхностной мембране лимфоцита и функционируют как рецепторы. При этом на поверхности каждого лимфоцита экспрессируется около ста тысяч молекул антител. Кроме того, B-лимфоциты секретируют в кровоток продуцированные ими молекулы антител, являющиеся измененными формами поверхностных рецепторов этих лимфоцитов.

Антитела формируются до появления антигена, и антиген сам отбирает для себя антитела. Как только антиген проникает в организм человека, он встречается буквально с войском лимфоцитов, несущих различные антитела, причем у каждого есть свой индивидуальный распознающий участок. Антиген соединяется только с теми рецепторами, которые в точности ему соответствуют. Лимфоциты, связавшие антиген, получают пусковой сигнал и дифференцируются в плазматические клетки, продуцирующие антитела. Поскольку лимфоцит запрограммирован на синтез антител только одной специфичности, антитела, секретируемые плазматической клеткой, будут идентичны своему оригиналу, т.е. поверхностному рецептору лимфоцита и, следовательно, будут хорошо связываться с антигеном. Так антиген сам отбирает антитела, распознающие его с высокой эффективностью.

2. Общая характеристика T-лимфоцитов

Дополнительно см.:

Т-лимфоциты и их циркуляция

В образовании антител центральная роль принадлежит B-лимфоцитам. При этом B-лимфоциты обеспечивают специфический приобретенный иммунитет совместно с другими малыми лимфоцитами — T-лимфоцитами, используя разнообразные механизмы, направленные в большинстве случаев на расширение пределов эффективности врожденного иммунитета.

T-лимфоциты, или Т-клетки (от лат. thymus «тимус») — лимфоциты, развивающиеся у млекопитающих в тимусе из предшественников — претимоцитов, поступающих в него из красного костного мозга. В тимусе T-лимфоциты дифференцируются, приобретая Т-клеточные рецепторы (англ. TCR) и различные корецепторы (поверхностные маркеры). Играют важную роль в приобретённом иммунном ответе. Обеспечивают распознавание и уничтожение клеток, несущих чужеродные антигены, усиливают действие моноцитов, NK-клеток, а также принимают участие в переключении изотипов иммуноглобулинов (в начале иммунного ответа B-клетки синтезируют IgM, позже переключаются на продукцию IgG, IgE, IgA).

T-лимфоциты подразделяются на ряд подклассов. Главные из них это две различные, неперекрывающиеся субпопуляции: клетки одной из них несут маркер CD4 и в основном «помогают» в осуществлении иммунного ответа или индуцируют его (T-хелперы), клетки другой несут маркер CD8 и обладают преимущественно цитотоксической активностью (цитотоксические T-лимфоциты (T-киллеры)). При этом, Т-хелперы стимулируют выработку антител, а Т-супрессоры тормозят её.

Одни CD4 T-клетки участвуют в регуляции дифференцировки B-лимфоцитов и образования антител. Другие CD4 T-клетки взаимодействуют с фагоцитами, помогая им в разрушении микробных клеток. Обе эти субпопуляции CD4 T-клеток названы хелперными T-клетками. Получены очевидные функциональные доказательства существования отдельной субпопуляции антигенспецифичных T-супрессоров, способных подавить иммунный ответ либо путем прямого цитотоксического воздействия на антигенпрезентирующие клетки, либо путем выделения «супрессивных» растворимых белков — цитокинов, либо путем передачи сигнала отрицательной регуляции.

Третья группа T-лимфоцитов распознает и разрушает клетки, инфицированные вирусами или иными внутриклеточно размножающимися патогенами. Этот тип CD8 T-лимфоцитов назван цитотоксическими T-лимфоцитами. Как правило, распознавание антигена T-клетками происходит только при условии его презентации на поверхности других клеток в ассоциации с молекулами MHC. В распознавании участвует специфичный к антигену T-клеточный рецептор, функциональнои структурно сходный с тем поверхностным иммуноглобулином sIg, который у B-клеток служит антигенраспознающим рецептором.

Свои функции воздействия на другие клетки T-лимфоциты осуществляют путем выделения цитокинов, которые передают сигналы другим клеткам, или в результате прямых межклеточных контактов. Как и в случае B-лимфоцитов, отбор и активация T-лимфоцитов происходят после контакта с антигеном, затем они проходят стадию клональной экспансии и превращаются в зрелые T-хелперы и цитотоксические T-лимфоциты, а также формируют обширную популяцию клеток памяти.

Одна из важных регуляторных функций T-лимфоцитов — это их способность стимулировать B-клетки к пролиферации и дифференцировке. Другая важная регуляторная функция T-клеток состоит в их способности угнетать иммунный ответ. При этом T-хелперы и T-супрессоры обнаруживают комплексный тип антигенной специфичности.

Фундаментальным свойством T-клеток является их специфичность по отношению к продуктам главного комплекса гистосовместимости MHC. Специфическое иммунологическое распознавание патогенных организмов — это всецело прерогатива лимфоцитов, поэтому именно они инициируют реакции приобретенного (специфического) иммунитета.

Отдельно стоит отметить т.н. NK-клетки (естественные киллеры или натуральные киллеры)

В настоящее время NK-клетки рассматривают как отдельный класс лимфоцитов. NK являются одним из важнейших компонентов клеточного врождённого иммунитета. Естественные киллерные (NK) клетки — это лимфоциты, которые могут опосредовать лизис определенных опухолевых клеток и вирусно-инфицированных клеток без предварительной активации. Они также могут регулировать специфический гуморальный и клеточно-опосредованный иммунитет. Основная функция NK — уничтожение клеток организма, не несущих на своей поверхности MHC и таким образом недоступных для действия основного компонента противовирусного иммунитета — Т-киллеров.

Дополнительно о Т- и В-лимфоцитах см. здесь →

Источник: propionix.ru

Адекватная защитная реакция организма на вторжение вирусов, бактерий и других патогенов — уничтожить пораженные клетки, не допустив распространения инфекции и гибели большого числа собственных клеток. Если инфицированная вирусом клетка его заметила, запускаются процессы врожденного иммунитета: аутофагия (утилизация внутренних компонентов клетки с помощью ферментов лизосом) и апоптоз (запрограммированная гибель клеток). Однако патогенных вирусов и бактерий очень много, к тому же они постоянно меняются до неузнаваемости. Чтобы справиться с ними, подключается система адаптивного иммунитета и его главные участники — лимфоциты. Вершиной эволюции адаптивного иммунитета стал цитотоксический Т-лимфоцит, или Т-киллер. Для распознавания фрагмента вируса (антигена) на зараженной клетке он использует Т-клеточный рецептор (T cell receptor, TCR), случайно и независимо собирающийся на каждой Т-клетке в вилочковой железе (тимусе). Механизм сборки TCR уникален и присущ только иммунной системе позвоночных животных. Считается, что эти преимущества впервые получили примитивные рыбы около 500 млн лет назад, когда в результате ретровирусной инфекции в их гаметы внедрились гены, кодирующие особые белки (рекомбиназы), ответственные за рекомбинацию генов TCR.

Классическая иммунология человека построена на изучении иммунных клеток крови просто потому, что образец крови можно взять у любого пациента и исследовать в норме и в патологии. Именно на клетках крови была выстроена классификация Т-лимфоцитов — деление на Т-киллеры и Т-хелперы, которые проверяют антигенную специфичность Т-киллеров, выдают им «лицензию на убийство» и способны управлять всем ходом иммунного ответа через сигнальные растворимые молекулы, цитокины. Позднее из ветви Т-хелперов была выделена группа регуляторных Т-клеток, подавляющих избыточный адаптивный иммунитет.

Но, как нам напоминает реклама йогурта, значительная часть клеток иммунной системы сосредоточена вокруг слизистой оболочки пищеварительного тракта и в других тканях. В то время как в 5–6 л крови взрослого человека находится около 6–15 млрд T-лимфоцитов, в эпидермисе и коже — 20 млрд Т-клеток [1], в печени — еще 4 млрд [2]. Достаточно ли изучения образцов крови для полного описания функций Т-клеток, если в периферических органах Т-клеток больше, чем в кровотоке? И достаточно ли классических субпопуляций, чтобы описать все типы Т-клеток, находящихся в организме человека?

Жизненный цикл Т-лимфоцита

Каждая Т-клетка после сборки TCR проходит тестирование на функциональность случайно собранного рецептора (положительная селекция) и на отсутствие специфичности к собственным антигенам организма, т.е. на отсутствие очевидной аутоиммунной угрозы (отрицательная селекция). Этапы селекции происходят в вилочковой железе; при этом более 90% клеток-предшественников погибает, не сумев правильно собрать рецептор либо пройти селективный отбор. Выжившие Т-клетки пролиферируют и выходят из тимуса в кровоток — это наивные Т-лимфоциты, еще не встречавшиеся с антигеном. Наивная Т-клетка циркулирует в крови и периодически заходит в лимфоузлы, где в Т-клеточной зоне контактирует со специализированными клетками, которые представляют ей чужеродный антиген.

После встречи с антигеном в лимфоузле Т-клетка приобретает способность снова делиться — становится предшественницей Т-клеток памяти (Stem Cell Memory T cells, TSCM). Cреди ее потомков появляются клетки центральной памяти (Central Memory T cells, TCM) и эффекторные клетки-предшественники (Effector Memory T cells, TEM), которые при делении дают короткоживущие эффекторные клетки, осуществляющие иммунную реакцию (TEMRA-клетки) [3]. Все эти клетки выходят из лимфоузла и перемещаются по крови. Эффекторные клетки затем могут покинуть кровоток для осуществления иммунной реакции в периферической ткани органа, где находится патоген. Что потом — снова путешествие по крови и лимфоузлам?

Клетки стромы, т.е. основы лимфоузла, выделяют сигнальные вещества (хемокины) для того, чтобы позвать Т-клетку в лимфоузел. Распознают хемокины лимфоузлов рецепторы хоминга CCR7 и CD62L. Но на эффекторных клетках оба рецептора отсутствуют. Из-за этого долгое время было загадкой, как эффекторные клетки могут попасть из периферической ткани обратно во вторичные лимфоидные органы — селезенку и лимфоузлы.

В то же время стали накапливаться данные (о различиях в репертуарах TCR и профилях транскрипции между TEM в крови и в других тканях), которые никак не укладывались в концепцию постоянной миграции Т-клеток между тканями и кровью. Решено было выделить новую субпопуляцию — резидентные клетки памяти (Resident Memory T cells, TRM), которые населяют определенный орган и не рециркулируют [5].

Откуда впервые появляются резидентные клетки ткани? Это потомки эффекторных клеток, которые потеряли способность рециркулировать. Некоторые периферические для иммунной системы ткани, например слизистая тонкого кишечника и брюшная полость, позволяют эффекторным Т-лимфоцитам проникать внутрь свободно, другие — очень ограниченно. Большой поток эффекторных Т-клеток в эти ткани наблюдается только при реакции воспаления. К тканям второго типа относятся головной и спинной мозг, отделенные барьером от иммунной системы, а также многие другие ткани: периферические ганглии, слизистые половых органов и кишечника, легкие, эпидермис, глаза. Разница между двумя типами тканей — в экспрессии дополнительных молекул хоминга для эффекторных Т-клеток, например молекул адгезии MadCAM-1 для проникновения в эпителий [3].

Резидентные Т-клетки в старении тканей человека

Карта соотношений присутствия отдельных субпопуляций Т-клеток в разных органах человека, как ни странно, была составлена только в 2014 г. Команда Донны Фарбер из медицинского центра Колумбийского университета Нью-Йорка провела сравнение фенотипов Т-клеток, выделенных из крови и тканей доноров органов всех возрастных групп от 3 до 73 лет (всего 56 доноров) [6]. Анализ субпопуляций Т-клеток при помощи проточной цитофлуориметрии подтвердил многие данные, полученные методами с меньшим разрешением и меньшей статистикой, и некоторые черты описания иммунной системы, перенесенные с иммунологии мыши на человека, к примеру снижение содержания наивных Т-лимфоцитов во всех органах при старении организма.

Уменьшение числа наивных Т-клеток с возрастом связано с быстрым старением вилочковой железы, в которой будущие Т-клетки проходят этапы сборки TCR, проверку его работоспособности и селекцию на отсутствие аутоиммунного потенциала. Важно не только снижение абсолютной численности наивных Т-клеток, но и уменьшение разнообразия репертуара Т-клеточных рецепторов, а значит, и возможности сформировать адаптивный иммунный ответ на ранее незнакомую инфекцию [7]. Для наивных Т-киллеров подтвердилось прогрессирующее падение численности в крови и лимфоузлах, хотя для наивных Т-хелперов отрицательная корреляция численности с возрастом в данном исследовании оказалась значительной только для вторичных лимфоидных органов, но не для крови.

Выделение Т-лимфоцитов памяти, эффекторных клеток памяти и короткоживущих эффекторных клеток из слизистых легких, тонкого и толстого кишечника, паховых и мезентериальных лимфоузлов доноров органов позволило впервые оценить динамику данных популяций в тканях человека при старении. Доля центральных клеток памяти ожидаемо растет с течением жизни, в соответствии с ростом числа инфекций, которые успели встретиться организму и попасть в библиотеку памяти иммунной системы. Эффекторные клетки памяти TEM стремительно заполняют нишу для Т-клеток в тканях ребенка, быстро, примерно к 12 годам, вытесняя наивные Т-клетки. Растет и количество терминально дифференцированных эффекторных Т-киллеров (TEMRA), но только в лимфоузлах и в селезенке; в нелимфоидных тканях численность TEMRA падает. Короткоживущие терминально дифференцированные Т-киллеры чаще всего встречаются в крови, селезенке и слизистых легких в любом возрасте, а вот среди Т-хелперов эта субпопуляция представлена исчезающе малым числом клеток. Аналогично мало центральных клеток памяти среди Т-киллеров, преимущественно они находятся в слизистых двух барьерных тканей: легких и кишечника.

Широкими мазками карту распределения Т-лимфоцитов человека можно обрисовать так: наивные Т-клетки путешествуют по крови и периодически заходят во вторичные лимфоидные органы, киллеры TEMRA находятся в крови, селезенке и легких. Для центральных клеток памяти, судя по всему, характерно более индивидуальное распределение по тканям, чем для других субпопуляций: во всяком случае, закономерностей динамики при старении разных тканей выявить не удалось. Эффекторные клетки памяти, включающие и TRM-субпопуляцию, доминируют среди Т-клеток слизистых барьерных тканей. В целом, при старении Т-клеточного иммунитета нелимфоидные ткани проявляют большую стабильность субпопуляций, лимфоидные ткани — большую возрастную динамику типов Т-клеток [6]. Стабильность тканевых клеток проще объяснить, если разобраться, какие из эффекторных клеток TEM остаются в ткани, становятся резидентными TRM и из каких событий состоит их жизнь после отказа от путешествий по организму.

Как отличить резидентные клетки тканей от примесей клеток крови?

Резидентные Т-клетки корректно, но неудобно каждый раз определять по способности индивидуальной клетки мигрировать в лимфоузлы, поэтому необходимо составить список характерных признаков, по которым можно выявить принадлежность к этой субпопуляции. Резидентные Т-лимфоциты в тканях — естественных барьерах организма (например в легких и слизистой тонкого кишечника) немного похожи на классические эффекторные клетки крови: экспрессируют маркер активированных клеток CD69, причем экспрессия стабильна в течение жизни при взрослении и старении и характерна для всех нелимфоидных тканей. Но вдобавок CD69 колокализуется с маркером CD103, который обозначает группу молекул адгезии — интегринов, способствующих прикреплению резидентной Т-клетки к эпителию и к фибробластам в подслизистой выбранного органа. Для эффекторных Т-клеток во вторичных лимфоидных органах экспрессия интегринов CD103 совершенно нехарактерна: TEM-клетки постоянно сохраняют подвижный фенотип.

У карты, составленной коллективом Донны Фарбер, есть крупный недочет: неясно, насколько чисто удается выделить Т-лимфоциты из органа, какую долю анализируемых клеток на самом деле составляют Т-лимфоциты крови из капилляров внутри органа.

Особенно остро вопрос загрязнения клетками крови стоит для легких — неслучайно субпопуляционный состав Т-клеток легких неожиданно похож на Т-клетки крови и лимфоузлов. Вопрос загрязнения клетками крови был изящно решен для Т-лимфоцитов мыши: подопытных животных заражали вирусом лимфоцитарного хориоменингита после пересадки трансгенного клона Т-клеток P14, специфичного к данному вирусу. В результате при инфекции большая часть циркулирующих клеток была представлена вирусоспецифичным клоном P14, а его присутствие в тканях можно было выявить с помощью флуоресцирующих антител к TCR P14. Мышам в кровь вводили антитело анти-CD8 к маркеру Т-киллерных клеток, оно быстро распространялось по кровотоку и связывалось со всеми Т-киллерами в крови (но не в тканях). При микроскопии срезов органов легко было отличить резидентные киллерные TRM от только недавно вышедших из крови в орган клеток, помеченных анти-CD8 антителом [9]. Численность резидентных клеток, подсчитанная этим методом, в 70 раз превышала количество, определенное методом проточной цитометрии; разница меньше чем в два раза наблюдалась только для резидентных клеток лимфоузлов и селезенки. Получается, стандартные методики выделения лимфоцитов из органов плохо подходят для анализа киллерных резидентных клеток и существенно занижают размеры популяции.

Работа резидентных Т-клеток: не стоит путать туризм с эмиграцией

Мышиные резидентные клетки тканей в нормальной ситуации почти не перемещаются внутри нелимфоидной ткани и достаточно прочно прикреплены молекулами адгезии к строме органа. Когда резидентные макрофаги той же ткани секрецией цитокинов инициируют реакцию воспаления, ТRM приобретают большую подвижность и патрулируют близлежащий эпителий в поисках зараженных клеток.

Если воспалительная реакция усиливается, то клетки понимают это как сигнал о подкреплении: к работе патрульных TRM подключаются вновь прибывающие из крови TCM— и TEM-клетки. Эти клетки крови куда более подвижны и лучше перемещаются в эпителии. Значит ли это, что именно в крови находятся готовые действовать Т-киллеры среди TEM, а CD8+ TRM выполняют в ткани хелперные и регуляторные функции?

С одной стороны, Т-хелперы по спектру Т-клеточных рецепторов более тканеспецифичны, т.е. пересечений между репертуарами TCR клеток, взятых из разных тканей, совсем мало, тогда как клетки одного клона Т-киллера встречаются в разных тканях среди TEM [6]. Спектр функций и репертуар антигенной специфичности TRM еще предстоит исследовать, но способности к уничтожению зараженных клеток тканей у TRM-киллеров точно есть. Более того, в модели мышиной инфекции полиомавирусом, протекающей в ткани головного мозга, аффинность вирусоспецифичных Т-клеточных рецепторов резидентных киллерных клеток выше, чем у вирусоспецифичных клеток центральной памяти [10].

Однако размер популяции Т-клеток зависит не только от специфичности TCR к инфекциям, которые раньше протекали в данном органе, но и от гомеостатической пролиферации Т-клеток — размножения более удачливых клеток для заполнения емкости органа по числу Т-лимфоцитов. По маркерам CD28 и CD127 на поверхности клеток можно отличить недавно и давно активированные через TCR клетки от тех, которые получили только гомеостатический сигнал к пролиферации от фактора роста IL-7. При старении ткани гомеостатическое размножение клеток начинает преобладать над пролиферацией активированных через TCR клеток.

Независимо от Т-клеточных рецепторов часто функционируют NKT-клетки, тип резидентных клеток печени, встречающихся и в других тканях. Они могут быть активированы NK-клеточными рецепторами через распознавание не индивидуальных антигенов, а общих молекулярных паттернов опасности и тканевого стресса. При активации CD8+ NKT-клетки выделяют цитотоксические гранулы и лизируют подозрительные клетки ткани, к примеру единичные опухолевые клетки и зараженные вирусами клетки, экспрессирующие и выставляющие на внешней мембране стрессорные молекулы. При старении тенденция TRM к активации без Т-клеточного рецептора, через NK-клеточные рецепторы или цитокиновые сигналы, может приводить к ошибочному лизису клеток ткани, недостаточному контролю над хронически зараженными или перерождающимися участками эпителия.

Патологические проявления, связанные с работой резидентных Т-клеток, включают органоспецифичные аутоиммунные синдромы и синдромы хронического воспаления в ткани. Примеры хронического воспаления, поддерживаемого резидентными Т-лимфоцитами, — контактный дерматит и псориаз, а механизмом служит выделение воспалительных факторов IL-17 резидентными Т-киллерами и IL-22 резидентными Т-хелперами дермы. CD8+ эффекторные Т-киллеры, находящиеся в головном мозге, похожи по совокупности мембранных молекул-маркеров на TRM кожи, кишечника и легких и способны подталкивать развитие перемежающегося рассеянного склероза при периодических выбросах воспалительных цитокинов. Неясно, однако, есть ли в норме в головном мозге популяция TRM или же это Т-лимфоциты, оставшиеся в ткани после нейротропной вирусной инфекции [8].

Функции резидентных клеток памяти в норме — при отсутствии инфекции или хронического воспаления — могут включать cross-talk (взаимную регуляцию преимущественно через секрецию цитокинов и костимуляторные молекулы) с неклассическими малоизученными лимфоидными клетками. Ими могут быть ассоциированные со слизистыми γ/δ Т-клетки, несущие альтернативный вариант сборки Т-клеточного рецептора, или лимфоидные клетки врожденного иммунитета (Innate Lymphoid Cells, ILC), которые делят с Т- и В-лимфоцитами общие черты эпигенетического ландшафта, но не имеют Т-/В- или NK-клеточных рецепторов [11, 12].

TRM клетки контактируют с антигенпрезентирующими клетками тканей — дендритными клетками кожи и резидентными макрофагами тканей. Резидентные миелоидные клетки в разных тканях дифференцированы и слабо похожи друг на друга. К примеру, макрофаги маргинальной зоны селезенки, макрофаги печени и микроглия (макрофаги мозга) будут сильно отличаться и по морфологии, и по спектру функций. Кроме обнаружения антигенов в ткани, резидентные макрофаги заняты регуляцией процессов старения и самообновления тканей, в частности, выделяют факторы роста и цитокины, стимулирующие деление стволовых клеток тканей. В жировой ткани, к примеру, макрофаги стимулируют дифференцировку новых жировых клеток, но при переходе в активированное M1-состояние запускают воспаление и вместо дифференцировки заставляют увеличиваться и набухать имеющиеся жировые клетки. Сопутствующие изменения метаболизма жировой ткани приводят к накоплению жировой массы и в последние годы связываются с механизмами развития ожирения и диабета II типа. В коже цитокины, выделяемые макрофагами и резидентными γ/δ Т-клетками, стимулируют деление стволовых клеток при регенерации эпидермиса и стволовых клеток волосяных фолликулов [13, 14]. Можно предположить, что хелперные TRM-клетки при патрулировании эпителия и образовании контактов с тканевыми макрофагами могут модулировать спектр и объем выделяемых последними факторов роста для стволовых клеток, воспалительных цитокинов и факторов ремоделирования эпителия — и тем самым участвовать в обновлении тканей.

Источник: elementy.ru

Дендритные клетки и лимфоциты

Примечание. На данной странице кратко рассмотрены функции и характеристики основных иммунокомпетентных клеток: Т- и В-лимфоцитов и дендритных клеток (DCs). Но в начале дана характеристика особому двойному функционалу иммунной системы, в которой основную роль играют лимфоциты. Поэтому стоит напомнить, что же из себя предсталяют эти клетки.

Лимфоциты — это клетки иммунной системы, представляющие собой разновидность лейкоцитов, которые обеспечивают гуморальный иммунитет (выработка антител), клеточный иммунитет (контактное взаимодействие с клетками-мишенями), а также регулируют деятельность клеток других типов. По морфологическим признакам выделяют два типа лимфоцитов: большие гранулярные лимфоциты (чаще всего ими являются NK-клетки и малые лимфоциты (T-клетки и B-клетки).

Типы лимфоцитов 

Те или иные механизмы иммунной защиты есть практически у всех животных. Эти механизмы сильно различаются по своей структуре, сложности, эффективности и, главное, по соотношению врожденных и приобретенных компонентов. У беспозвоночных преобладает врожденный иммунитет, хотя это далеко не абсолютное правило. У позвоночных вдобавок к врожденным защитным механизмам развилась необычайно сложная адаптивная иммунная система, способная приспосабливаться (адаптироваться) к всевозможным новым инфекциям, вырабатывать новые средства борьбы с ними и обладающая к тому же хорошей памятью (именно благодаря иммунной памяти мы получаем стойкий иммунитет ко многим болезням, однажды переболев ими).

У всех «высших» позвоночных основными компонентами адаптивной иммунной системы являются лимфоциты двух типов: B и T (см.: B cell, T cell). Каждый зрелый лимфоцит производит один (и только один) тип рецепторов, причем каждый рецептор способен распознавать чужеродные молекулы (антигены) строго определенного типа. Рецепторы B-лимфоцитов называются антителами, они могут отделяться от поверхности лимфоцита и самостоятельно атаковать «врагов» (например, бактерий). Рецепторы Т-лимфоцитов (Т-клеточные рецепторы) по своей структуре похожи на антитела, но они прочно приделаны к поверхности Т-лимфоцита и не расплываются свободно в окружающей среде, подобно антителам.

В ходе развития (созревания) лимфоцитов происходит сложная перестройка их генома. Суть ее состоит в том, что из имеющегося в геноме набора «заготовок» комбинаторным путем формируются зрелые, готовые к использованию гены антител или Т-клеточных рецепторов. Возникает огромное разнообразие лимфоцитов, производящих сотни тысяч и миллионы разных иммунных рецепторов. Среди этих рецепторов неизбежно появляются и опасные для организма, готовые наброситься на свои собственные антигены. Лимфоциты, производящие такие рецепторы, отбраковываются; остальные сохраняются. В результате организм получает огромный набор лимфоцитов, способных распознавать чуть ли не любые чужеродные белки и углеводы. Когда в организм проникает инфекция (например, бактерии), те B-лимфоциты, чьи антитела проявляют наибольшее сродство к поверхностным веществам (антигенам) данной бактерии, дополнительно «подгоняют» гены своих антител к этим антигенам путем соматического гипермутирования.

T- и B-лимфоциты высших позвоночных обмениваются между собой разнообразными химическими сигналами (см. ниже интерлейкины). В соответствии с этим у разных типов лимфоцитов активны строго определенные гены, ответственные за прием и передачу этих сигналов.

Интерлейкины — группа цитокинов (белков), синтезируемая и секретируемая Т-лимфоцитами, В-лимфоцитами и NK-клетками, а также взаимодействующими с ними клетками. Цитокины — это небольшие пептидные информационные молекулы. Цитокины имеют молекулярную массу, не превышающую 30 кD. Цитокин выделяется на поверхность клетки А и взаимодействует с рецептором находящейся рядом клетки В. Таким образом, от клетки А к клетке В передается сигнал, который запускает в клетке В дальнейшие реакции. Их основными продуцентами являются лимфоциты (дополнительно о цитокинах см. здесь →).

Более подробно о цитокинах см. в отдельном разделе:

Одно из главных функциональных различий В- и Т-лимфоцитов состоит в том, что первые специализируются в первую очередь на борьбе с инфекциями путем массового производства антител, а вторые — в большей степени «разведчики» и специалисты по тонкому различению «своих» и «чужих» антигенов; в частности, они внимательно следят за тем, чтобы B-лимфоциты по ошибке не начали производить аутоиммунные антитела, атакующие собственные клетки организма.

Т-клеточные рецепторы идентифицируют присутствие чужеродной белковой молекулы только в том случае, если эта молекула уже попала внутрь какой-нибудь другой клетки организма (например, B-лимфоцита) и была там расщеплена на короткие кусочки. Эти кусочки затем соединяются со специальными белками (их называют белками Главного Комплекса Гистосовместимости (ГКГС, англ. MHC, major histocompatibility complex). Комплексы из белков ГКГ и коротких обрывков других белков — своих и чужих — клетки выставляют на своей поверхности специально для того, чтобы Т-лимфоциты могли их «ощупать» своими рецепторами. Т-клеточные рецепторы безошибочно отличают «свое» от «чужого», но только в том случае, если исследуемый образец аккуратно порезан на кусочки нужной длины и присоединен к белку ГКГ.

Разделение труда между лимфоцитами неизбежно вытекает из самой «идеи» производства огромного количества разнообразных иммунных рецепторов комбинаторным путем. С одной стороны, благодаря этой технологии позвоночные успешнее, чем любые другие животные, противостоят разнообразным инфекциям. Вряд ли без этого наши предки смогли бы стать теплокровными, то есть превратиться в ходячий термостат с питательной средой для микробов. С другой, такая иммунная система должна находиться под строжайшим контролем, иначе она мгновенно убьет свой собственный организм. Кто же может проконтролировать, какой антиген распознал тот или иной лимфоцит, точно ли этот антиген чужой и не будет ли для организма вреда, если данный лимфоцит начнет размножаться? Кроме другого лимфоцита, никто в этом не разберется. Иммунная система должна контролировать себя сама.

Совместить в одной и той же клетке обе функции — «боевую» и «самоконтролирующую» — очень трудно, особенно если эти функции должны выполняться с очень высокой эффективностью. Тем самым создаются предпосылки для разделения труда между лимфоцитами: одни из них специализируются на борьбе с инфекцией, а другие внимательно следят за первыми, чтобы те не начали по ошибке производить опасные для организма антитела.

Активация иммунитета и Дендритные клетки

В 2011 году Нобелевская премия по физиологии и медицине присуждена Брюсу Бойтлеру и Жюлю Хоффманну за открытие механизмов активации врождённого иммунитета, и Ральфу Штайнману за открытие дендритных клеток и их роли в активации адаптивного иммунитета. Эти исследования называют революционными, поскольку открытие врождённого иммунитета в корне изменило представление о функционировании иммунной системы.

Иммунитет. Это слово давно и прочно заняло своё место в лексиконе современного человека. Чаще всего под иммунитетом понимают способность организма защищаться от опасных вирусов, бактерий, грибков или других паразитов. Но что это за механизм и как, собственно, осуществляется эта защита, понимают лишь немногие специалисты. Механизм и вправду очень сложный. Нобелевские лауреаты этого года вскрыли лишь некоторые ключевые моменты «первой линии обороны» — системы врождённого иммунитета.

В природе существуют две линии защиты, два вида иммунитета.

Первая и самая древняя — система врождённого иммунитета, которая нацелена на разрушение клеточной мембраны чужеродной клетки. Она присуща всем живым существам — от дрозофилы до человека. Если всё же какой-либо белковой молекуле-чужаку удалось прорваться сквозь «первую линию обороны», с ней расправляется «вторая линия» — адаптивный, или приобретённый, иммунитет.

Адаптивный иммунитет — это высшая форма защиты, которая присуща только позвоночным. Механизм приобретённого иммунитета очень тонко настроен и специфичен. Вкратце: при попадании в организм чужеродной белковой молекулы белые кровяные клетки (лейкоциты) начинают производить антитела — на каждый белок (антиген) вырабатывается своё определённое антитело. Сначала активируются так называемые T-клетки (T-лимфоциты), которые начинают производить активные вещества цитокины, запускающие синтез антител B-клетками (B-лимфоциты). Сила или слабость иммунной системы обычно оценивается по количеству именно B- и T-клеток, настолько они важны для защиты организма. Взаимодействие антиген-антитело очень сильное и очень специфическое. Когда антитела «садятся» на белки-антигены, находящиеся на поверхности вируса или бактерии, развитие инфекции в организме блокируется (дополнительно об адаптивном имунитете см. здесь).

Процесс выработки антител запускается не сразу, у него есть определённый инкубационный период, зависящий от типа патогена. Зато, если уж процесс активации пошёл, как только та же самая инфекция попытается проникнуть в организм ещё раз, B-клетки моментально отреагируют выработкой антител, и инфекция будет уничтожена немедленно, не причинив никакого вреда. Именно поэтому на некоторые виды инфекций у человека вырабатывается иммунитет на всю оставшуюся жизнь.

Рисунок 1. Дендритные клетки как бы показывают T-клеткам их «врагов»Toll-подобные рецепторы на поверхности взаимодействуют с характерными молекулярными структурами на поверхности клеточной мембраны бактерии (PAMP), внутрь клетки идёт биохимический сигнал, и на поверхность дендритной клетки выносятся антигены, которые T-клетки могут легко «пощупать» с помощью специальных антиген-распознающих белков. «Узнавание» антигена сопровождается активацией T-клеток с последующим превращением их в Т-хелперы и запуском каскада биохимических реакций, конечный результат которых — выработка специфических антител В-клетками. Кроме того, под действием PAMP дендритные клетки и макрофаги вырабатывают специальные молекулы — цитокины, также способствующие активации T-клеток. Адаптированный рисунок из статьи Medzhitov R. Toll-like receptоrs and innate immunity. Nat. Rev. Immunol. 2001, 1, 135–142.

А вот система врождённого иммунитета неспецифична и не обладает «долгосрочной памятью», поскольку реагирует на некие молекулярные структуры, присущие всем патогенным микроорганизмам. Эти структуры получили название «патоген-ассоциированные молекулярные образы» (pathogen-associated molecular patterns — PAMP). Такими PAMP служат молекулы, входящие в состав клеточной мембраны бактерий. Несмотря на химические различия, все эти структуры обладают следующими свойствами: они синтезируются только микроорганизмами (в клетках животных их нет, поэтому распознавание PAMP расценивается иммунной системой как сигнал к началу борьбы с чужаком); они характерны для целого ряда патогенов, а не только для одного; эти структуры являются важными для жизнедеятельности бактерии, поэтому в процессе эволюции они меняются очень медленно (иначе иммунная система просто не успевала бы настраивать распознавание). Если бактерии удаётся прорвать «первую линию обороны» и избежать уничтожения макрофагами или гранулоцитами, то в борьбу должна включиться система приобретённого иммунитета.

Каким образом система врождённого иммунитета подаёт знак системе приобретённого иммунитета на выработку специфических антител? Вот за решение этого ключевого вопроса иммунологии и присуждена Нобелевская премия 2011 года.

В 1973 году Ральф Штайнман открыл новый вид клеток, которые назвал дендритными, поскольку внешне они напоминали дендриты нейронов. Клетки обнаружились во всех тканях организма, которые соприкасались с внешней средой: в коже, лёгких, слизистой оболочке желудочно-кишечного тракта. Сначала исследователь предположил (в ту пору это вызвало скептицизм многих учёных), а затем и доказал, что дендритные клетки служат посредниками между врождённым и приобретённым иммунитетом. То есть «первая линия обороны» подаёт через них сигнал, который активирует T-клетки и запускает каскад выработки антител B-клетками (дополнительно о врожденном иммунитет см. здесь).

Дендритные клетки (англ. Dendritic cells, DC) – это  популяция особых клеток иммунной системы костно-мозгового происхождения, функция которых заключается в презентации «вражеских» антигенов другим клеткам иммунной системы. Таким способом они активируют адаптивный иммунитет. По научному, такие клетки-посредники называются антигенпрезентирующими (АПК). См. механизм действия на рис. 1 и рис. 2).

Как оказалось позже, дендритные клетки (так же как и макрофаги и эпителиальные клетки) имеют на клеточной поверхности специальные белковые комплексы — рецепторы. Гены, кодирующие эти рецепторы, аналогичны Toll-генам плодовой мушки дрозофилы (от нем. toll — сногсшибательный, безумный), играющим ключевую роль в эмбриогенезе. В 1996 году Жюль Хоффманн обнаружил, что у мушек с «выключенным» Toll-геном полностью отсутствовал иммунитет и они погибали от любой грибковой инфекции. Хоффманн предположил, что ген Tollважен не только для развития эмбриона, он ещё играет ключевую роль в иммунной системе. Как оказалось, этот ген кодирует специальные рецепторы, распознающие молекулы в структуре мембран бактериальных патогенов (PAMP), посылая биохимический сигнал на устранение «чужака». Их назвали «Toll-подобные рецепторы» (англ. Toll-like).

При взаимодействии РАМР с Toll-подобным рецептором на поверхности дендритной клетки появляются белки-антигены, которые и запускают адаптивный иммунный ответ T-клеток. У человека обнаружен десяток таких Toll-подобных рецепторов. Некоторые из них находятся на поверхности клеток, другие «плавают» в клеточной цитоплазме. Конечным результатом взаимодействия PAMP с этими рецепторами является активация T-клеток. На клеточном уровне происходит активация фагоцитов: они начинают продуцировать активные формы кислорода, а следовательно, более интенсивно переваривать «обрывки» клеточных стенок чужеродных бактерий.

В 1998 году Брюс Бойтлер изучал рецепторы бактериальных липополисахаридов (LPS) — молекул, в которых липид и сахар «сшиты» между собой. LPS — очень активные в иммунологическом отношении молекулы, они не просто стимулируют, а «суперстимулируют» иммунитет, в определённых условиях вызывая септический шок. Бойтлер пытался найти ген, отвечающий за эффекты LPS, и обнаружил, что мыши, нечувствительные к LPS, имеют мутацию в гене, очень похожем на Toll-ген мушки-дрозофилы. Toll-подобный рецептор случайно оказался тем самым неуловимым LPS-рецептором, то есть LPS взаимодействует с Toll-подобным рецептором, приводя к активации воспалительных процессов, вплоть до септического шока. Так выяснилось, что у мушек и мышей есть один и тот же механизм защиты от инфекции. «Зловредными» компонентами мембраны клеточных бактерий, которые и вызывали реакцию врождённого иммунитета, оказались липополисахариды — компоненты клеточной стенки грамотрицательных бактерий.

Таким образом, открытие врождённого иммунитета привело к появлению новых подходов в профилактике и лечении заболеваний, в разработке новых вакцин и противоопухолевых препаратов.

Адаптивный иммунитет может дифференцировать между конкретными патогенами и нацелить ответ, который является специфическим для данного патогена. Он может быстро реагировать при повторном воздействии конкретного патогена, предотвращая развитие симптомов (иммунологическая память). Адаптивная иммунная система координируется лимфоцитами (класс лейкоцитов) и приводит к выработке антител. В-лимфоциты (В-клетки) являются антитело-продуцирующими клетками, которые распознают и нацеливают определенный фрагмент патогена (антиген). Хелперные Т-лимфоциты (Т-клетки) являются регуляторными клетками, которые высвобождают химические вещества (цитокины) для активации специфических В-лимфоцитов

  1. Когда фагоцитарные лейкоциты поглощают патоген, некоторые из них представляют переваренные фрагменты (антигены) на их поверхности
  2. Эти антигенпрезентирующие клетки (дендритные клетки) мигрируют в лимфатические узлы и активируют специфические хелперные Т-лимфоциты
  3. Затем хелперные Т-клетки высвобождают цитокины для активации конкретной В-клетки, способной продуцировать антитела, специфичные к антигену
  4. Активированная В-клетка будет делиться и дифференцироваться с образованием короткоживущих плазматических клеток, которые производят большое количество специфических антител
  5. Антитела будут нацелены на их специфический антиген, повышая способность иммунной системы распознавать и уничтожать патоген.

Небольшая доля активированной B-клетки (и активированной TH-клетки) будет развиваться в клетки памяти, чтобы обеспечить длительный иммунитет.

См. дополнительно:

Лимфоциты ответственны за приобретенный иммунитет

B-лимфоциты (B-клетки) — функциональный тип лимфоцитов, играющих важную роль в обеспечении гуморального иммунитета. При контакте с антигеном или стимуляции со стороны T-клеток некоторые B-лимфоциты трансформируются в плазматические клетки, способные к продукции антител. Другие активированные B-лимфоциты превращаются в B-клетки памяти. Помимо продукции антител, В-клетки выполняют множество других функций: выступают в качестве антигенпрезентирующих клеток, продуцируют цитокины и экзосомы.

B-лимфоциты продуцируют и секретируют в кровоток молекулы антител, являющиеся измененными формами антигенраспознающих рецепторов этих лимфоцитов. Возникновение антител в крови после появления любого чужеродного белка- антигена — независимо от того, вреден он или безвреден для организма, и представляет собой иммунный ответ. Появление антител не просто защитная реакция организма против инфекционных заболеваний, но явление, имеющее широкое биологическое значение: это общий механизм распознавания «чужого». Например, иммунная реакция распознает как чужой и постарается удалить из организма любой аномальный и, следовательно, потенциально опасный вариант клетки, в которой в результате мутации в хромосомной ДНК образуется мутантная белковая молекула.

B-лимфоциты млекопитающих дифференцируются сначала в печени плода, а после рождения — красном костном мозге. В цитоплазме покоящихся B-клеток отсутствуют гранулы, но имеются рассеянные рибосомы и канальцы шероховатого эндоплазматического ретикулума. Каждая B-клетка генетически запрограммирована на синтез молекул иммуноглобулина, встроенных в цитоплазматическую мембрану. Иммуноглобулины функционируют как антигенраспознающие рецепторы, специфичные к определенному антигену. На поверхности каждого лимфоцита экспрессируется около ста тысяч молекул рецепторов. Встретив и распознав антиген, соответствующий структуре антигенраспознающего рецептора B-клетки размножаются и дифференцируются в плазматические клетки, которые образуют и выделяют в растворимой форме большие количества таких рецепторных молекул — антител.  Антитела представляют собой крупные гликопротеины и содержатся в крови и тканевой жидкости. Благодаря своей идентичности исходным рецепторным молекулам они взаимодействуют с тем антигеном, который первоначально активировал B-клетки, проявляя таким образом строгую специфичность.

После связывания антигена с рецепторами B-клетки клетка активируется. Активация B-клеток состоит из двух фаз: пролиферации и дифференцировки; все процессы индуцируются контактом с антигеном и T- хелперами.

В результате пролиферации увеличивается число клеток, способных реагировать с введенным в организм антигеном. Значение пролиферации велико, поскольку в неиммунизированном организме очень мало B-клеток, специфичных для определенных антигенов.

Часть клеток, пролиферирующих под действием антигена, созревает и дифференцируется последовательно в антителообразующие клетки нескольких морфологических типов, в том числе и плазматические клетки . Промежуточные стадии дифференцировки B-клеток отмечены меняющейся экспрессией разнообразных белков клеточной поверхности, необходимых для взаимодействия B-клеток с другими клетками.

Каждый лимфоцит, относящийся к B-лимфоцитам и дифференцирующийся в костном мозге, запрограмирован на образование антител только одной специфичности.

Молекулы антител не синтезируются никакими другими клетками организма, и все их многообразие обусловлено образованием нескольких миллионов клонов B-клеток. Они (молекулы антител) экспрессируются на поверхностной мембране лимфоцита и функционируют как рецепторы. При этом на поверхности каждого лимфоцита экспрессируется около ста тысяч молекул антител. Кроме того, B-лимфоциты секретируют в кровоток продуцированные ими молекулы антител, являющиеся измененными формами поверхностных рецепторов этих лимфоцитов.

Антитела формируются до появления антигена, и антиген сам отбирает для себя антитела. Как только антиген проникает в организм человека, он встречается буквально с войском лимфоцитов, несущих различные антитела, причем у каждого есть свой индивидуальный распознающий участок. Антиген соединяется только с теми рецепторами, которые в точности ему соответствуют. Лимфоциты, связавшие антиген, получают пусковой сигнал и дифференцируются в плазматические клетки, продуцирующие антитела. Поскольку лимфоцит запрограммирован на синтез антител только одной специфичности, антитела, секретируемые плазматической клеткой, будут идентичны своему оригиналу, т.е. поверхностному рецептору лимфоцита и, следовательно, будут хорошо связываться с антигеном. Так антиген сам отбирает антитела, распознающие его с высокой эффективностью.

2. Общая характеристика T-лимфоцитов

Дополнительно см.:

Т-лимфоциты и их циркуляция

В образовании антител центральная роль принадлежит B-лимфоцитам. При этом B-лимфоциты обеспечивают специфический приобретенный иммунитет совместно с другими малыми лимфоцитами — T-лимфоцитами, используя разнообразные механизмы, направленные в большинстве случаев на расширение пределов эффективности врожденного иммунитета.

T-лимфоциты, или Т-клетки (от лат. thymus «тимус») — лимфоциты, развивающиеся у млекопитающих в тимусе из предшественников — претимоцитов, поступающих в него из красного костного мозга. В тимусе T-лимфоциты дифференцируются, приобретая Т-клеточные рецепторы (англ. TCR) и различные корецепторы (поверхностные маркеры). Играют важную роль в приобретённом иммунном ответе. Обеспечивают распознавание и уничтожение клеток, несущих чужеродные антигены, усиливают действие моноцитов, NK-клеток, а также принимают участие в переключении изотипов иммуноглобулинов (в начале иммунного ответа B-клетки синтезируют IgM, позже переключаются на продукцию IgG, IgE, IgA).

T-лимфоциты подразделяются на ряд подклассов. Главные из них это две различные, неперекрывающиеся субпопуляции: клетки одной из них несут маркер CD4 и в основном «помогают» в осуществлении иммунного ответа или индуцируют его (T-хелперы), клетки другой несут маркер CD8 и обладают преимущественно цитотоксической активностью (цитотоксические T-лимфоциты (T-киллеры)). При этом, Т-хелперы стимулируют выработку антител, а Т-супрессоры тормозят её.

Одни CD4 T-клетки участвуют в регуляции дифференцировки B-лимфоцитов и образования антител. Другие CD4 T-клетки взаимодействуют с фагоцитами, помогая им в разрушении микробных клеток. Обе эти субпопуляции CD4 T-клеток названы хелперными T-клетками. Получены очевидные функциональные доказательства существования отдельной субпопуляции антигенспецифичных T-супрессоров, способных подавить иммунный ответ либо путем прямого цитотоксического воздействия на антигенпрезентирующие клетки, либо путем выделения «супрессивных» растворимых белков — цитокинов, либо путем передачи сигнала отрицательной регуляции.

Третья группа T-лимфоцитов распознает и разрушает клетки, инфицированные вирусами или иными внутриклеточно размножающимися патогенами. Этот тип CD8 T-лимфоцитов назван цитотоксическими T-лимфоцитами. Как правило, распознавание антигена T-клетками происходит только при условии его презентации на поверхности других клеток в ассоциации с молекулами MHC. В распознавании участвует специфичный к антигену T-клеточный рецептор, функциональнои структурно сходный с тем поверхностным иммуноглобулином sIg, который у B-клеток служит антигенраспознающим рецептором.

Свои функции воздействия на другие клетки T-лимфоциты осуществляют путем выделения цитокинов, которые передают сигналы другим клеткам, или в результате прямых межклеточных контактов. Как и в случае B-лимфоцитов, отбор и активация T-лимфоцитов происходят после контакта с антигеном, затем они проходят стадию клональной экспансии и превращаются в зрелые T-хелперы и цитотоксические T-лимфоциты, а также формируют обширную популяцию клеток памяти.

Одна из важных регуляторных функций T-лимфоцитов — это их способность стимулировать B-клетки к пролиферации и дифференцировке. Другая важная регуляторная функция T-клеток состоит в их способности угнетать иммунный ответ. При этом T-хелперы и T-супрессоры обнаруживают комплексный тип антигенной специфичности.

Фундаментальным свойством T-клеток является их специфичность по отношению к продуктам главного комплекса гистосовместимости MHC. Специфическое иммунологическое распознавание патогенных организмов — это всецело прерогатива лимфоцитов, поэтому именно они инициируют реакции приобретенного (специфического) иммунитета.

Отдельно стоит отметить т.н. NK-клетки (естественные киллеры или натуральные киллеры)

В настоящее время NK-клетки рассматривают как отдельный класс лимфоцитов. NK являются одним из важнейших компонентов клеточного врождённого иммунитета. Естественные киллерные (NK) клетки — это лимфоциты, которые могут опосредовать лизис определенных опухолевых клеток и вирусно-инфицированных клеток без предварительной активации. Они также могут регулировать специфический гуморальный и клеточно-опосредованный иммунитет. Основная функция NK — уничтожение клеток организма, не несущих на своей поверхности MHC и таким образом недоступных для действия основного компонента противовирусного иммунитета — Т-киллеров.

Дополнительно о Т- и В-лимфоцитах см. здесь →

Источник: propionix.ru

Ссылка на основную публикацию
Похожие публикации

2021 © Диагностический центр МРТ и КТ "Честная медицина" Правовая информация